پیش بینی بیماری سرطان سینه با روش طبقه بندی فازی

ساخت طبقه بند فازی برای پیش بینی بیماری سرطان

در این پروژه به تشخیص بیماری سرطان با استفاده از روش فازی سازی می پردازد. برای این منظور از پایگاه داده با نام breast-cancer-wisconsin در مخزن uci repository استفاده شد. این پایگاه داده حاوی ۶۹۹ نمونه داده و ۹ ویژگی شرطی و ۱ ویژگی تصمیم گیری می باشد. ویژگی تصمیم گیری دارای دو مقدار برچسب کلاس ۲و ۴ می باشد. بطوریکه ۲ به معنای خوش خیم و ۴ برای نمونه داده های بدخیم می باشد. مقادیر ۹ ویژگی داده نیز در بازه ۱ الی ۱۰ قرار دارند.

برای تشخیص بیماری با استفاده از روش فازی سازی، از سیستم فازی مدل سوگنو استفاده می شود زیرا برچسب کلاس ما عدد است. برای این منظور باید ابتدا به طراحی توابع عضویت فازی برای هریک از ویژگی های داده پرداخت زیرا ویژگی های داده به عنوان ورودی سیستم فازی در نظر گرفته می شود. برای هر ویژگی داده که به عنوان ورودی سیستم فازی است، باید به طراحی توابع تعلق پرداخت.

تشخیص سرطان سینه با استفاده از شبکه عصبی پرسپترون چند لایه پس انتشار

ABSTRACT
Breast Cancer (BC) is one of the most prevalent forms of Cancer among women. Premature diagnosis of BC is crucial to the survival of the patient. Here we implement an algorithm designed to diagnose and forecast breast cancer using a multi-layer perceptron (MLP) back-propagation technique that will help doctors diagnose the disease (benign, malignant). The proposed MLP includes an input layer, and, has inputs linked to the ten attributes of the data set. It has a hidden layer with five nodes (neurons). It leads to the pair outcomes: benign and malignant. The objective of our projected algorithm is to diagnose and classify the disease. MLP can help timely recognition of the cancer, and, therefore, can help to go for proper medication at early stage of cancerous development. This approach is tested on the (WBC) Wisconsin Breast Cancer dataset, resulted in 98.9 percent accuracy of classification using MLP back propagation.
. Key words: Neural-Network, Tumour, Prediction, Features, Training, Analysis, Multi-layer Perceptron

 

۱. INTRODUCTION
As per the reports, one of each eight women in the United States build ups breast cancer in their life span. It is one of the most critical diseases among women leading to their death. Premature identification needs an exact and consistent diagnosis system that allows physician to differentiate benign breast tumours from malignant ones without departing for surgical biopsy. Marcano-Cedeno et al. (2011) Breast cancer originates with an unrestrained partition of one cell and consequences in an observable mass called tumour [1]. The tumour can be benign or malignant. Katsis et at (2013) Breast Cancer causes several of the risk factors such as genetic, obesity, family history, having a first child after the age thirty,
not having children, aging, menstrual periods, not having children, smoking, drinking, that raise a women possibility of developing breast cancer [2]. Anil Arora et al. (2016) the precise diagnosis of the breast cancer is one of the critical problems in the medical field [3]. NN based MLP back propagation technique seems to be an efficient method for classification of breast cancer. This approach is pedestal on the WBC (Wisconsin Breast Cancer) and the taxonomy of dissimilar category of breast cancer datasets. The MLP back propagation is used to reduce the error rate of breast cancer and increase accuracy.

شناسایی سیستم غیرخطی بازگشتی با بکارگیری متغیرهای پنهان

 

Recursive nonlinear-system identification using latent variables

Abstract

In this paper we develop a method for learning nonlinear system models with multiple outputs and inputs. We begin by modeling the errors of a nominal predictor of the system using a latent variable framework. Then using the maximum likelihood principle we derive a criterion for learning the model. The resulting optimization problem is tackled using a majorization–minimization approach. Finally, we develop a convex majorization technique and show that it enables a recursive identification method. The method learns parsimonious predictive models and is tested on both synthetic and real nonlinear systems.

Introduction

In this paper we consider the problem of learning a nonlinear dynamical system model with multiple outputs y(t) and multiple inputs u(t) (when they exist). Generally this identification problem can be tackled using different model structures, with the class of linear models being arguably the most well studied in engineering, statistics and econometrics Barber (2012), Bishop (2006), Box et al. (2015), Ljung (1998), Söderström and Stoica (1988).

Linear models are often used even when the system is known to be nonlinear Enqvist (2005), Schoukens et al. (2016). However certain nonlinearities, such as saturations, cannot always be neglected. In such cases using block-oriented models is a popular approach to capture static nonlinearities (Giri & Bai, 2010). Recently, such models have been given semiparametric formulations and identified using machine learning methods, cf. Pillonetto (2013) and Pillonetto, Dinuzzo, Chen, De Nicolao, and Ljung (2014). To model nonlinear dynamics a common approach is to use Narmax models Billings (2013), Sjöberg et al. (1995).

In this paper we are interested in recursive identification methods (Ljung & Söderström, 1983). In cases where the model structure is linear in the parameters, recursive least-squares can be applied. For certain models with nonlinear parameters, the extended recursive least-squares has been used (Chen, 2004). Another popular approach is the recursive prediction error method which has been developed, e.g., for Wiener models, Hammerstein models, and polynomial state-space models Mattsson and Wigren (2016), Tayamon et al. (2012), Wigren (1993).

Nonparametric models are often based on weighted sums of the observed data (Roll, Nazin, & Ljung, 2005). The weights vary for each predicted output and the number of weights increases with each observed datapoint. The weights are typically obtained in a batch manner; in Bai and Liu (2007) and Bijl, van Wingerden, Schön, and Verhaegen (2015) they are computed recursively but must be recomputed for each new prediction of the output.

For many nonlinear systems, however, linear models work well as an initial approximation. The strategy in Paduart et al. (2010) exploits this fact by first finding the best linear approximation using a frequency domain approach. Then, starting from this approximation, a nonlinear polynomial state-space model is fitted by solving a nonconvex problem. This two-step method cannot be readily implemented recursively and it requires input signals with appropriate frequency domain properties.

In this paper, we start from a nominal model structure. This class can be based on insights about the system, e.g. that linear model structures can approximate a system around an operating point. Given a record of past outputs, y(t) and inputs u(t), that is, Dt≜{y(1),u(1),…,y(t),u(t)},a nominal model yields a predicted output y0(t+1) which differs from the output y(t+1). The resulting prediction error is denoted ε(t+1) (Ljung, 1999). By characterizing the nominal prediction errors in a data-driven manner, we aim to develop a refined predictor model of the system. Thus we integrate classic and data-driven system modeling approaches in a natural way.

The general model class and problem formulation are introduced in Section ۲. Then in Section ۳ we apply the principle of maximum likelihood to derive a statistically motivated learning criterion. In Section ۴ this nonconvex criterion is minimized using a majorization–minimization approach that gives rise to a convex user-parameter free method. We derive a computationally efficient recursive algorithm for solving the convex problem, which can be applied to large data sets as well as online learning scenarios. In Section ۵, we evaluate the proposed method using both synthetic and real data examples.

In a nutshell, the contribution of the paper is a modeling approach and identification method for nonlinear multiple input–multiple output systems that:

explicitly separates modeling based on application-specific insights from general data-driven modeling,

circumvents the choice of regularization parameters and initialization points,

learns parsimonious predictor models,

admits a computationally efficient implementation.

Notation: Ei,j denotes the ijth standard basis matrix.  and  denote the Kronecker and Hadamard products, respectively. vec(⋅) is the vectorization operation. ‖x‖۲‖x‖۱ and ‖X‖W=tr{X⊤WX}, where W≻۰, denote ℓ۲-, ℓ۱– and weighted norms, respectively. The Moore–Penrose pseudoinverse of X is denoted X†.

Remark 1

An implementation of the proposed method is available at https://github.com/magni84/lava.

ناحیه بندی دندان بر روی تصاویر اشعه ایکس با استفاده از خوشه بندی فازی نیمه نظارت شده با محدودیت های فضایی

Tuan, T. M. (2017). Dental segmentation from X-ray images using semi-supervised fuzzy clustering with spatial constraints. Engineering Applications of Artificial Intelligence۵۹, ۱۸۶-۱۹۵.

 

کلید واژه ها
ویژگی های دندانی ناحیه بندی بندی تصویر دندان خوشه بندی فازی خوشه بندی فازی نیمه نظارت شده تصاویر اشعه ایکس

نکات برجسته
در این مقاله بر روی ناحیه بندی بندی دندان بر روی تصاویر اشعه ایکس تمرکز شده  است.
یک خوشه‌بندی فازی نیمه نظارت شده جدید با محدودیت‌های فضایی نشان داده شد.
این به طور تجربی بر روی مجموعه داده های واقعی دانشگاه پزشکی هانوی تأیید شد.
نسبت به سایر روش های مرتبط دقت بهتری داشت.
مناسب ترین پارامترها و نرم افزار قطعه بندی دندان طراحی شد.